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We give a nonrigorous derivation of the nonlinear Boltzmann equation from the
Schrödinger evolution of interacting fermions. The argument is based mainly on
the assumption that a quasifree initial state satisfies a property called restricted
quasifreeness in the weak coupling limit at any later time. By definition, a state
is called restricted quasifree if the four-point and the eight-point functions of the
state factorize in the same manner as in a quasifree state.
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1. INTRODUCTION

The fundamental equation governing many-body quantum dynamics,
the Schrödinger equation, is a time reversible hyperbolic equation. The
quantum dynamics of many-body systems, however, are often modelled by
a nonlinear, time irreversible (quantum) Boltzmann equation, which
exhibits a particle-like behavior. This apparent contradiction has attracted
a lot of attention over the years, see the book by Balescu (2) for a formal
derivation based on the quantum BBGKY hierarchy and a truncation
procedure. Later on, Hugenholtz (9) gave a derivation using a perturbation



expansion involving multiple commutators. He selected a class of terms
from this expansion and argued that it gives the Boltzmann equation.
To the second order in the coupling constant, Hugenholtz’s claim was
proved by Ho and Landau. (8) Beyond that it is not even clear that these
terms satisfy the Boltzmann equation order by order, partly due to the
complicated selection rules.

In this paper, we present a derivation of the quantum Boltzmann
equation under the main assumption that in the weak coupling limit (8) the
four-point and the eight-point functions of the state factorize at any time in
the same manner as in a quasifree state, see (22) and (23). A state with such
a factorization property is called a restricted quasifree state. To rigorously
verify this assumption, one has to analyze the connected m-point functions,
a very difficult problem in our view. So it might appear that we have not
improved much beyond the work. (9) Our approach however has the
following two main merits. First: It identifies the concept, the restricted
quasifreeness, to replace the independence in the classical setting so that the
structure of the collision term, i.e., the quartic nonlinearity and the product
of the factors F and 1−F in Eq. (10), appears as a simple consequence of
this assumption. Second: Unlike Hugenholtz’s approach which is tied to
the commutator expansion, the restricted quasifreeness can now be verified
using other methods such as field-theoretical techniques.

Recent work by Benedetto, Castella, Esposito, and Pulvirenti (3) has
given an interesting different derivation. We had learned this work in a
recent meeting and had subsequently sent them an early version of this
manuscript.

2. DEFINITIONS OF THE DYNAMICS

We describe the quantum dynamics in the second–quantized formula-
tion. For definiteness, we shall restrict ourselves to a fermion system. Our
derivation is valid for bosons as well with the only difference being that
some ± signs change along the derivation and in the final quantum
Boltzmann equation (the terms (1−F) change to (1+F) in (10)). It should
be noted that many-boson systems are in general more difficult to control
rigorously than many-fermion systems. The quantum Boltzmann equation
for fermions also preserves the property 0 [ F [ 1. On the contrary, the
equation for bosons may blow up in finite time.

Most of our setup is fairly standard and we recall the details briefly
here. For background, see refs. 4 and 10. The configuration space is a
discrete torus L=Zd/LZd, of a very large width, L ¥N, which is kept finite
throughout the argument. The Hilbert space for the fermions is the
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standard Fock space FL :=Án \ 0 Mn HL, where HL :=a2(L, C).4 Because

4 Thus the fermions are spinless. We could also choose H −

L=a
2(L, C2) as the one-particle

Hilbert space, to allow for a fermion spin 1/2, without changing the derivation in an
essential way.

HL is finite-dimensional, the same holds for FL.
We shall work in momentum space, which for our finite lattice is the

discrete torus Lg :=2p
L Zd/2pZd. Let wp(x) :=e ip ·x where p ·x :=;d

i=1 pixi.
The set of functions {wp: p ¥ Lg} is an orthogonal basis of H (the nor-
malization is ||wp ||2=Ld). Therefore the annihilation operators ap=a(wp)
that are associated to this basis in the standard way (see refs. 4 or 10) obey
the canonical anticommutation relations (CAR)

apa
+
q +a+

p aq=d(p, q) :=˛
Ld if p=q

0 otherwise.
(1)

If F is continuous on B :=Rd/2pZd, then L−d ; p ¥ L* F(p)Q >B
ddp

(2p)d
F(p)

as LQ.. Since we are ultimately interested in the limit LQ., we will use
the continuum notation even for the finite sums, i.e., we write >L* dp F(p)
for L−d ; p ¥ L* F(p), etc.

Let A be the Cg algebra generated by {a+
p , ap: p ¥ Lg}. For a self-

adjoint element H ¥A, consider the time evolution given by H in the
Heisenberg picture, i.e., At :=e−itHAe itH for all A ¥A. Given a state r on
the algebra, we define for A ¥A, rt(A) :=r(At). For all t ¥ R, rt is again a
state on A, and its time evolution is given by the Schrödinger equation

i
“

“t
rt(A)=rt([H, A]). (2)

We take the Hamiltonian H :=H0+lF where

H0 :=F dp e(p) a+
p ap (3)

is the kinetic energy and

F :=F dk1 · · ·dk4Ok1k2 | F |k3k4P a+
k1
a+

k2
ak3

ak4
(4)

is the interaction. The coefficient function Ok1k2 | F |k3k4P is antisymmetric
under exchange of k1 and k2 and under exchange of k3 and k4, and it
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contains the momentum conservation delta function. For an interaction
generated by a two-body potential v(x−y) we have

Ok1k2 | F |k3k4P=d(k1+k2, k3+k4)

× 1
4 (v̂(k1 −k4)− v̂(k2 −k4)− v̂(k1 −k3)+v̂(k2 −k3)). (5)

We assume that Ok4k3 | F |k2k1P=Ok1k2 | F |k3k4P. Then F=F+. In terms
of v this condition means that v is real. Because the local density operators
in position space commute, we may assume that v is symmetric, i.e.,

v(x)=v(−x). (6)

We shall call a polynomial F in the creation and annihilation operators
quartic if it is homogeneous of degree four and contains exactly two crea-
tion and two annihilation operators. Any such quartic F has a representa-
tion similar to (5) with a coefficient Ok1k2 | F |k3k4P, and we shall always
assume that the coefficient is given in the properly antisymmetrized form so
that we can compare coefficients.

The state rt is determined by its values on monomials in the creation
and annihilation operators. The two point function in Fourier space is
defined by

npq(t) :=rt(a
+
p aq). (7)

We are interested in the Euler scaling limit of the two point function. In
configuration space it amounts to the rescaling

x=X/e, t=T/e, eQ 0.

Recall theWigner transform of a function k ¥ L2(Rd) is defined as

Wk(x, v) :=F e igx k̂ 1v−g
2
2 k̂ 1v+g

2
2 dg=F e ivy k 1x+y

2
2 k 1x−

y
2
2 dy.

Define the rescaled Wigner distribution as

W e
k(X, V) :=e−dWk 1

X
e
, V2 .

Its Fourier transform in X is given by

Ŵ e
k(t, V)=k̂ 1V−

et

2
2 k̂ 1V+

et

2
2.

370 Erdős et al.



We can easily extend this notions to the two point function npq. In particu-
lar, we can define the rescaled Wigner distribution W e

r(X, V) through its
Fourier transform:

Ŵ e
r(t, V)=r(a+

V− et2
aV+et2

).

Assume that

W e(X, V, T) :=We
rT/e

(X, V)Q F(X, V, T)

as eQ 0. Under the weak coupling scaling assumption, i.e.,

x=X/e, t=T/e, l=`e (8)

one expects that F(X, V, T) satisfies the nonlinear Boltzmann equation

“F(X, V, T)
“t

+V·NXF(X, V, T)

=−4p F dk2 dk3 dk4 d(k1+k2, k3+k4) d(E1+E2 −E3 −E4)

× |v̂(k1 −k4)− v̂(k1 −k3)|2

×[Fk1
Fk2

(1−Fk3
)(1−Fk4

)−Fk4
Fk3

(1−Fk2
)(1−Fk1

)] (9)

where Fkj
is short notation for F(X, kj, T) and Ei=e(ki) with k1=V. If

the state is homogeneous in space (i.e. translation invariant) at time zero,
then npq=d(p, q) Fp(t) for all later times t as well and the Boltzmann
equation is reduced to

“Fk1

“T
=−4p F dk2 dk3 dk4 |v̂(k1 −k4)− v̂(k1 −k3)|2 (10)

×d(k1+k2, k3+k4) d(E1+E2 −E3 −E4)

×[Fk1
Fk2

(1−Fk3
)(1−Fk4

)−Fk4
Fk3

(1−Fk2
)(1−Fk1

)].

Our goal is to give a heuristic derivation of this equation. For properties
regarding the existence, uniqueness, and the stationary states (which for-
mally are the Fermi–Dirac distributions) of the quantum Boltzmann equa-
tion (9), see ref. 5 for available rigorous results.

The quartic structure of the collision is due to the quantum nature and
the weak coupling limit. Instead of the weak coupling limit, one can take
the low density limit (x=X/e, t=T/e, l=1 and the density of the par-
ticles is e). The resulting equation will be the standard nonlinear Boltzmann

Quantum Boltzmann Equation 371



equation where collision term is quadratic with full quantum scattering
kernel and not just its Born approximation in the weak coupling limit.
Technically, the emergence of the full quantum scattering kernel can be
seen from resumming the Born series, see ref. 6 for the simpler case of the
Lorentz gas. From our experience working on the weak coupling (7) and low
density limits in random environments, we believe that a rigorous deriva-
tion of the low density limit will be somewhat more complicated than in the
weak coupling limit. However, the key difficulties arising from many-body
quantum dynamics are already present in the weak coupling limit which we
shall focus on.

3. THE EQUATION FOR THE TWO POINT FUNCTION

The Schrödinger equation can be written as

(i“t −e(p)+e(q)) npq(t)=lrt(Fpq), (11)

where Fpq :=[F, a+
p aq] is quartic with

Ok1k2 | Fpq | k3k4P=−d(q, k4)Ok1k2 | F |p k3P

+d(q, k3)Ok1k2 | F |p k4P

+d(p, k1)Ok2q| F |k3k4P

−d(p, k2)Ok1q| F |k3k4P. (12)

Therefore

npq(t)=npq(0) e−it(e(p)−e(q))− il F
t

0
ds e−i(t−s)(e(p)−e(q))rs(Fpq). (13)

Thus we need expectation values of quartic monomials, whose evolution
equation analogous to (13) involves ones of degree six, etc. This system of
equations ‘‘hierarchy’’) is similar to the Schwinger–Dyson equations, but
the commutator structure implies that in an expansion in Feynman graphs
only connected graphs contribute.

Let jr1,..., r4 (t) :=rt(a
+
r1a

+
r2a r3a r4 ) and

De(r1,..., r4) :=e(r1)+e(r2)−e(r3)−e(r4). (14)

The Schrödinger equation for j gives

(i“t −De(r1,..., r4)) jr1,..., r4 (t)=lrt([F, a
+
r1a

+
r2a r3a r4]) (15)
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which integrates to

jr1,..., r4 (t)=jr1,..., r4 (0) e
−it De(r1,..., r4)

− il F
t

0
ds e−i(t−s) De(r1,..., r4)rs([F, a

+
r1a

+
r2a r3a r4]). (16)

Thus

rt(Fpq)=r0(Fpq)− il F
t

0
dsrs([F, Gpq(t−s)]) (17)

where Gpq=Gpq(t−s) is quartic with

Ok1k2 | Gpq |k3k4P=e−i(t−s) De(k1,..., k4) (18)

×[Ok1k2 | F |k3pP d(k4, q)−Ok1k2 | F |k4pP d(k3, q)

−Oqk2 | F |k3k4P d(k1, p)+Oqk1 | F |k3k4P d(k2, p)].

Thus the Eq. (11) for npq(t) can be written as

(i“t −e(p)+e(q)) npq(t)=lr0(Fpq)− il2 F
t

0
ds rs([F, Gpq(t−s)]). (19)

4. RESTRICTED QUASIFREENESS

Up to this point, everything was exact; a heuristic derivation of the
Boltzmann equation now begins by treating the state rs as quasifree in
(19), i.e., expressing the term on the right hand side of (19) as a product
over npq(s).

To this end, it is advantageous to avoid any contractions in the com-
mutator, i.e., simply leave it in the form [F, G]=FG−GF, which gives

[F, Gpq(t−s)]=F dk1 · · ·dk4 dl1 · · ·dl4a
+
k1
a+

k2
a l4a l3a

+
k3
a+

k4
a l2a l1

×Mpq(k1, k2, k3, k4, l1, l2, l3, l4) (20)

with

Mpq(k1,..., l4)=[Ok1k2 | F |l4l3POk3k4 | Gpq(t−s) |l2l1P

−Ok3k4 | F |l2l1POk1k2 | Gpq(t−s) |l4l3P]. (21)
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We recall that expectation values of higher order monomials in a quasifree
state rs can be expressed by the two-point functions (see the Appendix). In
particular, the four-point function is given by the following determinant

rs(a
+
k1
a+

k2
a l2a l1 )=:

nk1l1 nk1l2

nk2l1 nk2l2

: (22)

and the eight-point function appearing in (20) is

rs(a
+
k1
a+

k2
a l4a l3a

+
k3
a+

k4
a l2a l1 )= :

nk1l1 nk1l2 nk1l3 nk1l4

nk2l1 nk2l2 nk2l3 nk2l4

nk3l1 nk3l2 ñk3l3 ñk3l4

nk4l1 nk4l2 ñk4l3 ñk4l4

: . (23)

Here each nkl stands for nkl(s) and ñkl=−d(k, l)+nkl(s) appears in the
lower right block because the monomial is not normal ordered. We shall
call a state rs restricted quasifree if both (22) and (23) are satisfied. We
shall assume this condition in the limit lQ 0.

Return to the derivation of the Boltzmann equation. A Laplace
expansion of the determinant gives

rt(a
+
k1
· · · a l1 )=:

nk1l1 nk1l2

nk2l1 nk2l2

: : ñk3l3 ñk3l4

ñk4l3 ñk4l4

:

− :nk1l1 nk1l2

nk3l1 nk3l2

: :nk2l3 nk2l4

ñk4l3 ñk4l4

:

+:nk1l1 nk1l2

nk4l1 nk4l2

: :nk2l3 nk2l4

ñk3l3 ñk3l4

:

+:nk2l1 nk2l2

nk3l1 nk3l2

: :nk1l3 nk1l4

ñk4l3 ñk4l4

:

− :nk2l1 nk2l2

nk4l1 nk4l2

: :nk1l3 nk1l4

ñk3l3 ñk3l4

:

+:nk3l1 nk3l2

nk4l1 nk4l2

: :nk1l3 nk1l4

nk2l3 nk2l4

: . (24)

Noting that Mpq(k1,..., l4) is antisymmetric under exchange of l1 and l2 and
under exchange of l3 with l4, and that the same is true for each of the six
summands in the Laplace expansion, we see that we may replace every
2×2 determinant by the product of the diagonal elements if we include
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a symmetry factor 4. Moreover, Mpq(k1,..., l4) is antisymmetric under
(k1, k2, l4, l3)Q (k3, k4, l2, l1) (this is just the antisymmetry of the commu-
tator in its two arguments), but the last of the six summands,
nk3l1nk4l2nk1l3nk2l4 , is symmetric, so it cancels out. Graphically, this is the
cancellation of the disconnected term. Thus the term multiplying
Mpq(k1,..., l4) is

4(nk1l1nk2l2 ñk3l3 ñk4l4

− nk1l1nk3l2nk2l3 ñk4l4

+nk1l1nk4l2nk2l3 ñk3l4

+nk2l1nk3l2nk1l3 ñk4l4

− nk2l1nk4l2nk1l3 ñk3l4 ) (25)

=4{nk1l1nk2l2 ñk3l3 ñk4l4

+(nk3l2 ñk4l4 − nk4l2 ñk3l4 ) (nk1l3nk2l1 − nk1l1nk2l3 )}.

Again, the last factor is antisymmetric with respect to an exchange of
k1 and k2 and an exchange of k3 and k4, so there is another symmetry
factor 4, and

+s([F, Gpq(t−s)])=F dk1 · · ·dk4 dl1 · · ·dl4 Mpq(k1,..., l4)

×4(nk1l1nk2l2 ñk3l3 ñk4l4+4nk1l1nk2l3nk4l2 ñk3l4 ). (26)

We remark that if we had used the commutator contraction to express
[F, G] in (20), then we would have needed to evaluate only monomials of
degree six on the state +s. The calculation would have been longer because
certain cancellations would be less transparent. However this approach has
the advantage that it requires the quasifree factorization property of +s
only for degree six monomials instead of degree eight.

5. SPATIAL HOMOGENEITY

If we assume that the distribution is homogeneous in space (i.e.,
translation invariant) at time zero, then npq=d(p, q) fp(t) for all later
times t as well by the translation invariance of H. In this case there are
further simplifications: the term r0(Fpp) vanishes and the e(p)−e(q) term
in the differential equation also drops out. Moreover, for p=q

Ok1k2 | Gpq | k3k4P=e−i(t−s) De(k1,..., k4)Ok1k2 | F |k3k4P

×(d(p, k4)+d(p, k3)−d(p, k2)−d(p, k1)) (27)
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so we can compute the contribution of the first term on the right hand side
of (26) as

F dk1 · · ·dl4 Mpq(k1,..., l4) 4nk1l1nk2l2 ñk3l3 ñk4l4

=F dk1 · · ·dk4 e−i(t−s) De(k1,..., k4)

×8 |Ok1k2 | F |k3k4P|2 (d(k4, p)−d(k1, p))

×(fk1
fk2

f̃k3
f̃k4

−fk4
fk3

f̃k2
f̃k1

) (28)

with f̃p=1−fp. The second term 16Mpq(k1,..., l4) nk1l1nk2l3nk4l2 ñk3l4 in (26)
drops out because with the assignment of momenta it is equal to

32(d(k1, p)−d(k3, p))Ok1k2| F |k3k2POk3k4| F |k4k1P cos[(t−s)(e(k3)−e(k1))],

and this quantity vanishes because the delta functions in both F factors are
d(k1, k3) and thus d(k1, p)−d(k3, p)=0.

Inserting (5) into (28), recalling that in our finite volume,
d(p, p)=Ld, so that d(p, q)2=Ldd(p, q), and using (6) and symmetry
arguments as above, we get

“t fp(t)=−l2 F
t

0
ds F dk1 · · ·dk4 d(k1+k2, k3+k4) e−i(t−s) De(k1,..., k4)

×2(d(k4, p)−d(k1, p)) |v̂(k1 −k4)− v̂(k1 −k3)|2

×(fk1
(s) fk2

(s) f̃k3
(s) f̃k4

(s)−fk4
(s) fk3

(s) f̃k2
(s) f̃k1

(s)). (30)

6. LOCAL APPROXIMATION IN TIME

We rewrite the equation as

−l−2
“t fp(t)=F

.

−.
dE F

t

0
ds e−iE(t−s) b(E, p, s) (31)

with

b(E, p, s)=F dk1 · · ·dk4 d(k1+k2, k3+k4) 2(d(k4, p)−d(k1, p))

× |v̂(k1 −k4)− v̂(k1 −k3)|2 d(E−De(k1,..., k4))

×(fk1
(s) fk2

(s) f̃k3
(s) f̃k4

(s)−fk4
(s) fk3

(s) f̃k2
(s) f̃k1

(s)), (32)

Since v is symmetric (6), b is a symmetric function of E.
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Notice that f and b are l dependent and we shall denote them by fl

and bl. We now assume that the limits

lim
lQ 0

flp(T/l2)=F(T, p), lim
lQ 0
bl(E, p, T/l2)=B(E, p, T) (33)

exist and the relation (32) continues to hold in the limit. We can take the
limit lQ 0 in (31) and this yields

−“TF(T, p)=lim
lQ 0

F
.

−.
dE F

T

0

dS
l2 e

−iE(T−S)/l2bl(E, p, S/l2). (34)

We now assume that we can replace the function bl by its limit B. Thus we
have

−“TF(T, p)=lim
lQ 0

F
.

−.
dE F

T

0

dS
l2 e

−iE(T−S)/l2B(E, p, S/l2). (35)

Interchanging the the integration and performing the E integration, we
have

−“TF(T, p)=lim
lQ 0

F
T

0

dS
l2 B̂( (T−S)/l2, p, S/l2).

Let u=(T−S)/l2. We can rewrite the last equation as

−“TF(T, p)=lim
lQ 0

F
T

0
du B̂( u, p, T+ul2).

In the limit lQ 0, the right side converges to

F
.

0
du B̂(u, p, T)=1

2 F
.

−.
du B̂( u, p, T )=pB(0, p, T).

where we have used the symmetry of b in E. Combining the last two equa-
tions, we have derived the Boltzmann equation (10).

In this derivation, we used the restricted quasifreeness assumption,
spatial homogeneity and the existence of the limit for the the two point
function npq (cf: (33)). We have not made precise the meaning of the limit
and we have freely interchanged limits with differentiations and integra-
tions etc. This suggests that for a rigorous proof the two point function has
to be controlled precisely, perhaps through some expansion method.
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The spatial homogeneity of the initial state can be replaced with the
assumption that the point function at any time scales as

npq(t)=R 1 et, p+q
2

,
p−q
2e
2 .

Our derivation above can easily be extended to this case to give the spa-
tially inhomogeneous Boltzmann equation (9).

APPENDIX A: QUASIFREE STATES AND DETERMINANTS

For finite L, the observable algebra is finite-dimensional, so a state r
is quasifree if and only if it is given by density matrix coming from a
quadratic Hamiltonian (see, e.g., ref. 1). That is,

r(A)=
1
Z
tr(e−H0A), (36)

where Z=tr e−H0. We restrict to states which are invariant under the
transformations ap Q e iaap for all a ¥ R. For this case we prove below that
the expectation value of any normal ordered monomial can be computed
with the following formula:

r 1D
m

n=1
a+

pn
D
mŒ

nŒ=1
aqnŒ
2=dmmŒ(−1)m(m−1)/2 det(r(a+

pn
aqnŒ ))1 [ n, nŒ [ m. (37)

To simplify notation, we enumerate our finite set Lg in some way so that
we can replace the subscript p ¥ Lg by a number i ¥ {1,..., N}, N=Ld.
Moreover, because (37) is homogeneous, we may rescale the creation
and annihilation operators by L−d/2, so that they obey the CAR
a ia

+
j +a+

j a i=dij with dij the Kronecker delta. With these conventions, and
by the just stated U(1) invariance,

H0=C
i, j

a+
i Qija j. (38)

Positivity of r requires H0 to be hermitian, so Q̄ij=Qji. Thus there is
U ¥ U(N) such that Q=UEUg with E=diag{E1,..., EN}. The operators
bk=; j Ukjaj have canonical anticommutation relations bkb

+
l +b+

l bk=dkl,
so that nk=b+

k bk satisfies n2
k=nk and nknl=nlnk. Thus e−H0 is the product

of commuting factors

e−H0=D
k

(1+(e−Ek −1) nk), (39)
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hence Z=<k (1+e−Ek), and r(b+
k b l)=dkl(1+eEk)−1. This implies

r(a+
i a iŒ)=UiŒl

1
1+eEl

Ūil=(1+eQ)−1
iŒi. (40)

Because H0 is diagonal when expressed in terms of b+ and b,

r 1D
m

k=1
b+

uk
D
mŒ

kŒ=1
bvŒk
2 (41)

vanishes unless mŒ=m and (v1,..., vm) is a permutation of (u1,..., um):
vk=up(k). In that case, by the CAR, (41) equals

(−1)m(m−1)/2 sign (p) r 1D
m

k=1
(b+

ukbuk )2 . (42)

Equation (37) now follows straightforwardly by expressing the product of
a+ and a in terms of b+ and b and using the definition of the determinant.

In (22) and (23), the indices of the annihilation operators are ordered
downwards, so the factor (−1)m(m−1)/2 is absent. The procedure of com-
muting a monomial that is not normal ordered to its normal ordered form
corresponds to successive row expansions of the determinant in (23).
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